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Linear resonance in viscous films on inclined wavy planes
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Abstract

We study viscous gravity-driven films flowing over periodically undulated substrates. Linear analysis describes steady flow along small
amplitude corrugations for films of arbitrary thickness. Solving the resulting system numerically, we demonstrate resonance (or, possibly,
near resonance) and identify different behaviours for thin, intermediate and thick films. Approximating the leading-order velocity profile
by the free surface value allows for an analytic solution, which – in the limit of high Reynolds numbers – recovers the different regimes
and reveals the relevant physical mechanisms. Our results support the view that the resonance is associated with an interaction of the
undulated film with capillary-gravity waves travelling against the mean flow direction. As a consequence, the resonance peak is attained
under conditions that render the wave phase velocity equal to zero in the laboratory reference frame, and thus permit direct exchange of
energy between the steadily deformed film and the free surface.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The flow of a viscous liquid down a wavy incline is an
extension of the paradigmatic gravity-driven film over a flat
incline (Chang, 1994) to study the effect of curved sub-
strates on the film flow. It is of great importance, since in
many industrial and environmental systems the substrates
are usually curved or undulated (Focke and Knibbe,
1986; deSantos et al., 1991; Webb, 1994). For monoto-
nously falling bottom contours, the local steady flow of
thin films at low Reynolds numbers corresponds essentially
to that over a flat incline at the local inclination angle
(Wang, 1984; Shetty and Cerro, 1993; Wierschem et al.,
2005). A general formulation of the problem of film flow
0301-9322/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
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along a curved substrate has recently been provided by
Roberts and Li (2006). On a flat incline, surface waves or
shear waves are generated beyond a critical Reynolds num-
ber (Benjamin, 1957; Yih, 1963; Lin, 1967; Floryan et al.,
1987). The onset of the surface waves in flow over an undu-
lated substrate deviates continuously with increasing steep-
ness from that for the flat plane (Wierschem et al., 2005;
Argyriadi et al., 2006).

Apart from the aforementioned qualitative similarities,
film flow over wavy bottoms also shows phenomena that
cannot be found in the flow down a flat incline: at moder-
ate steepness, hydraulic jumps are generated at the inflow
into the flat region of the undulated bottom (Wierschem
and Aksel, 2004a). At high Reynolds numbers, surface
waves can be suppressed and are eventually replaced by
three-dimensional instabilities (Vlachogiannis and Bonto-
zoglou, 2002; Wierschem and Aksel, 2004b). Besides
detachment at the lee side of bottom undulations (Malama-
taris and Bontozoglou, 1999), eddies form at the flat side of
the bottom contour at certain Reynolds numbers (Negny
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Fig. 1. Film flowing down an undulated bottom profile with wavelength k
and mean inclination angle a. The Cartesian coordinates x and z point in
mean flow direction and perpendicular to it.
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et al., 2001) or in the valleys of steeply undulated bottoms
even in creeping flows (Zhao and Cerro, 1992; Kang and
Chen, 1995; Scholle et al., 2004).

Recently, Luo and Pozrikidis (2006) have extended the
linear calculation to a wall with three-dimensional corruga-
tions. More abrupt wall topography changes have also
been considered in the limit of creeping flow, both by lubri-
cation theory and direct numerics (Kalliadasis et al., 2000;
Mazouchi and Homsy, 2001; Gaskell et al., 2004; Davis
and Troian, 2005).

Bontozoglou and co-workers have studied extensively
the interaction of viscous film flow down periodic corruga-
tions with capillary-gravity waves. For small amplitudes of
the bottom corrugation (linear wall) and rather thick films
they found numerically a resonance (or, possibly, near res-
onance) of the free surface with the bottom contour (Bon-
tozoglou and Papapolymerou, 1997). The enhancement of
the bottom amplitude at the free surface was rather weak,
with maximum relative amplitude that does not exceed a
factor three. Later, Bontozoglou (2000) studied numeri-
cally the effect of the steepness of the bottom contour
and calculated a skewed, bistable resonance with increasing
steepness. This flow regime is related to the classical invis-
cid problem of the resonance in a liquid current over an
undulated bed (Miles, 1986; Kirby, 1988; Sammarco
et al., 1994).

In an experimental study of film flow over rectangular
corrugations, Vlachogiannis and Bontozoglou (2002)
found evidence of resonance with the bottom contour.
Higher harmonics in the free surface could be traced back
to those of the bottom. While Bontozoglou and co-workers
focused on resonance in rather thick films in the capillary
and capillary-gravity regime, Wierschem and Aksel
(2004a) studied experimentally the resonance in relatively
thin films in the gravity-wave regime. In this case the film
thickness was about the same as the amplitude of the bot-
tom undulation.

Despite the above experimental and numerical progress,
there is yet no understanding of the mechanisms responsi-
ble for linear resonance and no systematic parametric study
of the phenomenon. Such an understanding is also essential
as a proper framework for investigating the nonlinear flow
modifications caused by large wall deformations. Steady
solutions along corrugated walls are important even when
unstable, because the instability is typically convective and
thus the basic flow structure is expected to persist.

In the present article, we combine numerical and analyt-
ical approaches towards a complete delineation of the
steady flow behaviour over a two-dimensional weakly cor-
rugated wall. In Section 2, we derive the governing equa-
tion, which is a variant of Orr–Sommerfeld equation with
inhomogeneous boundary conditions. We solve it numeri-
cally in Section 3, performing an extensive study of the
effect of the relevant dimensionless numbers. Qualitatively
different branches are identified, corresponding respectively
to films with small, intermediate and large thickness as
compared to the corrugation length. In Section 4, we
approximate the Orr–Sommerfeld equation and solve the
approximate version analytically. In the limit case of high
Reynolds numbers, we recover the different branches and
identify the respective physical mechanisms. Computa-
tional and analytic results converge to the same physical
explanation of the resonance, which is discussed in Section
5 in the frame of the different branches identified. Finally,
the conclusions are summarized in Section 6.

2. Governing equations for linear resonance

We study the two-dimensional film flow of an incom-
pressible and Newtonian liquid down a sinusoidal bottom
b(x) = a cos(2px/k), with wavelength k and amplitude a.
Axis x is the Cartesian coordinate in main flow direction,
which is inclined at an angle a with respect to the horizon-
tal, as shown in Fig. 1.

Denoting the position of the free surface, the bottom
contour, time, pressure, and the velocity components paral-
lel and perpendicular to the mean flow direction by f, b, t,
p, u, and w, respectively, we apply the following ‘natural’
scaling:

x ¼ k
2p

X ; z ¼ hZ; t ¼ 1

hui
k

2p
T

f ¼ hF ; b ¼ aB; p ¼ qhui2P

u ¼ huiU ; w ¼ 2ph
k
huiW

ð1Þ

where q, h, and hui are the liquid density, and the film
thickness and mean velocity for a flow of same flow rate
down a flat incline, respectively. The dimensionless quanti-
ties are denoted by capital letters. For a steady film flow
down a flat incline, the film thickness and the mean flow
velocity are according to the Nusselt solution

h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3m _q

g sin a
3

s
; hui ¼ _q

h
¼ gh2 sin a

3m
ð2Þ

where _q, g, and m are the flow rate, acceleration of gravity,
and the kinematic viscosity, respectively.



582 A. Wierschem et al. / International Journal of Multiphase Flow 34 (2008) 580–589
Applying this scaling, the Navier–Stokes equations read
in dimensionless form

dRe
oU
oT
þ U

oU
oX
þ W

oU
oZ

� �
¼ �dRe

oP
oX
þ 3þ o2U

oZ2
þ d2 o2U

oX 2

ð3Þ

d2Re
oW
oT
þ U

oW
oX
þ W

oW
oZ

� �
¼ �Re

oP
oZ
� 3 cot aþ d3 o

2W

oX 2
þ d

o
2W

oZ2

ð4Þ
where we introduced the Reynolds number for a flat in-
cline Re = huih/m, and the dimensionless film thickness
d = 2ph/k. The latter may equivalently be interpreted as
a dimensionless wavenumber. The continuity equation
takes the form,

oU
oX
þ oW

oZ
¼ 0 ð5Þ

In integral form mass conservation yields the dimensionless
flow rate

_Q ¼
Z F

nB
U dZ ¼ 1 ð6Þ

The field equations are complemented with the boundary
conditions, which are the no-slip and no-penetration
condition at the bottom

U ¼ W ¼ 0 ð7Þ
the kinematic boundary condition at the free surface

oF
oT
þ U

oF
oX
� W ¼ 0 ð8Þ

and the dynamic boundary condition at the free surface.
Neglecting the viscosity of air, the dynamic boundary con-
dition reads

ReðP � P AirÞ þ 3Bo�1
o2F
oX 2

1þ d oF
oX

� �2
h i3

2

� 2d oU
oX d2 oW

oX þ oU
oZ

d2 oW
oX þ oU

oZ 2d oW
oZ

 !2
64

3
75~n

¼ 0

ð9Þ
where PAir is the atmospheric pressure and where we intro-
duced the inverse Bond number Bo�1 ¼ ð2plCaÞ2=ðk2 sin aÞ
with capillary length lCa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=ðqgÞ

p
and surface tension

r. With the unity vectors in normal and tangential direc-
tion to the surface

~n ¼
~eZ � d oF

oX
~eXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ d oF
oX

� �2
q ; t ¼

~eX þ d oF
oX
~eZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ d oF
oX

� �2
q ð10Þ

respectively, the projection tangential to the surface reads

1� d
oF
oX

� �2
" #

d2 oW
oX
þ oU

oZ

� �
þ 4d2 oF

oX
oW
oZ
¼ 0 ð11Þ

where we made use of the continuity equation (5). In direc-
tion normal to the surface, the projection of the dynamic
boundary condition reads
ReðP � P AirÞ þ 3Bo�1
o2F
oX 2

1þ d2 oF
oX

� �2
h i3=2

¼ 2d
oW
oZ
� d

oF
oX

d2 oW
oX
þ oU

oZ

� �
ð12Þ

where we made use of (5) and (11).
Considering steady flow and bottom contours with cor-

rugation amplitudes much smaller than the film thickness
(n :¼ a/h� 1), we expand all quantities in a power series
in n,

U ¼ U 0 þ nU 1 þOðn2Þ
W ¼ W 0 þ nW 1 þOðn2Þ
P ¼ P 0 þ nP 1 þOðn2Þ
F ¼ F 0 þ nF 1 þOðn2Þ

ð13Þ

After approximating the boundary conditions by a Taylor
series around the flat bottom and the leading-order solu-
tion for the position of the free surface, we arrive at leading
order in n at the Nusselt solution for a steady film flow
down a flat incline with the dimensionless velocity
U0(Z) = 3(Z � Z2/2). We remark that in our linear expan-
sion the amplitude of the bottom corrugation is by defini-
tion much smaller than both the wavelength and the film
thickness. This allows examining also thick films, where d
is of order 1, without exceeding the limit of analytic contin-
uation of the Taylor expansion.

We replace the first-order velocity components U1 and
W1 by introducing the dimensionless stream function
W1(X, Z). For the steady flow over a periodic bottom, a
natural assumption is that the stream function has the same
periodicity as the bottom. Thus, we express the stream
function as W1(X, Z) = /(Z)eiX. After cross-differentiating
the X and Z components of the Navier–Stokes equation
to eliminate pressure, we derive the Orr–Sommerfeld equa-
tion for zero phase velocity,

/ZZZZ � 2d2/ZZ þ d4/ ¼ idRe½U 0ð/ZZ � d2/Þ � U 0ZZ /�
ð14Þ

where the subscript Z denotes differentiation with respect
to the Cartesian coordinate Z.

Next, we describe the response of the free surface at
first-order in n by the ansatz

F 1 ¼ AeiX ð15Þ

where A is the relative amplitude of the free surface to that
of the wall. The ansatz (15) is related to the assumptions of
small wall amplitude and of steady film flow. Thus, when
the Reynolds number is high enough for the flow to be-
come unstable, the steady solutions presently considered
are not realizable in a strict sense. However, we must note
that such solutions are still important because film instabil-
ities are typically convective. As a consequence, distur-
bances affect the flow only temporarily as they move
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downstream, and the steady flow re-establishes. This point
is further elaborated in Section 5.

Applying (13) and (15), the boundary conditions (7), (8),
(11) and (12) read

/ð0Þ ¼ 0 ð16Þ
/Zð0Þ ¼ �3 ð17Þ

/ð1Þ ¼ � 3

2
A ð18Þ

/ZZð1Þ þ ð2þ d2Þ/ð1Þ ¼ 0 ð19Þ

i/ZZZð1Þ þ
3

2
dRe� i3d2

� �
/Zð1Þ ¼ 2dðcot aþ Bo�1Þ/ð1Þ

ð20Þ

where we replaced A in (19) and (20) using the kinematic
boundary condition (18) and eliminated the pressure from
the dynamic boundary condition by differentiating it with
respect to X and inserting the X-component of the Na-
vier–Stokes equation.

The set of Eqs. (14)–(20) contains four dimensionless
parameters: Re, d, cota, and Bo�1. Eq. (20) shows that in
the linear limit considered here cota and Bo�1, which
describe the effects of the hydrostatic and the capillary
pressures, sum up to a single parameter, the pressure num-
ber Phc = cota + Bo�1, reducing the independent parame-
ters to three. Thus, in what follows we consider the two
pressure terms as a single parameter without analysing
the effects independently. We note that Reynolds number
and pressure terms only enter as products with the film-
thickness parameter d leading to reduced inertia and pres-
sure terms. As is apparent from (14), viscous friction is
mainly due to wall shear in thin films, where d2� 1, and
the convective term that transports changes in the vertical
velocity component is negligible. The latter as well as vis-
cous damping gains importance in thicker films.

With respect to the connection between the present
parametric analysis and possible experimental realization
of the flow, we find it more convenient to think in terms
of a specific wall with fixed wavelength. This also fixes
the inverse Bond number and makes the interpretation of
d as a dimensionless film thickness more appealing than
that of a dimensionless wavenumber. The two remaining
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Fig. 2. Resonance curves for different film thicknesses at pressure number Ph
parameters, Re and d, may be varied independently only
by controlling both the flow rate and the viscosity of the
liquid.

To the best of our knowledge it is not possible to
obtain for the Orr–Sommerfeld equation (14) an analytic
solution in closed form. This is due to the dependence
of the velocity U0 on the Z coordinate. Numerically, the
system (14)–(20) can be solved in a straightforward way.
We use a centred finite-difference scheme with equidistant
discretisation.
3. Numerical results

Fig. 2 shows the free-surface amplitude relative to that
of the wall as a function of the Reynolds number for dif-
ferent magnitudes of the pressure number and the dimen-
sionless film thickness. As is typical for resonance, all
curves show a local maximum for the amplitude at a cer-
tain Reynolds number, which we call the resonant Rey-
nolds number Reres. According to Fig. 2a, the resonance
is stronger at film thickness of about one. For thinner
films the maximum flattens progressively, whereas for
thicker films the maximum retains its sharpness but dimin-
ishes in amplitude. According to Fig. 2b, the free-surface
amplitude increases with the pressure number, and the
region of strong response moves to higher Reynolds
numbers.

The dependence of the resonance on the film thickness
is more subtle than can be appreciated by the few results
above. Generally, the resonance sharpens with increasing
film thickness. But depending on the magnitudes of the
pressure terms and on the film-thickness range, the
amplitude and the Reynolds number at resonance may
decrease or increase with increasing film thickness. Thus,
Fig. 3 is a detailed parametric study that illustrates how
amplitude and resonant Reynolds number depend on the
film thickness for different magnitudes of the pressure
number.

Fig. 3a shows the maximum amplitude of the free sur-
face and indicates that three different regimes are apparent:
(i) For thin films the maximum amplitude increases with
the film thickness and also with the pressure number. In
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c = 50 (a), and for different pressure numbers at film thickness d = 1 (b).
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Fig. 3. Maximum free-surface amplitude, i.e. free-surface amplitude at Re = Reres, as a function of the film-thickness parameter d for different pressure
numbers (a) and the resonant Reynolds number (b) from the numerical solution of the set of Eqs. (14)–(20).
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the limit of very thin films the free surface follows closely
the wall and thus its relative amplitude approaches every-
where the value one. This behaviour occurs as long as there
are no recirculation zones in the corrugation troughs, a
condition valid by definition in the present study of a line-
arly deformed wall. (ii) For thick films, resonance dimin-
ishes with film thickness and eventually tends to zero. In
this regime the effect of pressure number is only roughly
monotonic, exhibiting a minimum at a small but nonzero
value of the pressure number. (iii) The intermediate region
of order one film thickness appears, at low pressure num-
bers, to balance the above counteracting trends of thin
and thick films and to lead to a smooth maximum. How-
ever, for Phc � O(102), the intermediate region exhibits dis-
tinct saturation resulting in a plateau of the maximum
amplitude insensitive to further increase in the pressure
number. We consider this saturated region as the third
branch of the solution.

Fig. 3b shows the Reynolds number at resonance. For
pressure numbers of the order of 101, the Reynolds number
at resonance is of the order of 102 and decreases with the
film thickness. For pressure numbers of about 102, how-
ever, this decline in the Reynolds number for the maximum
free surface amplitude is only found for the thinnest films.
After a sharp local minimum the Reynolds number
increases again up to a local maximum and only diminishes
for thick films. For higher pressure numbers the decline for
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Fig. 4. Maximum amplitude of the free surface (a) and the resonant Reyn
thin films is limited to very small thicknesses, not resolvable
in the figure.

4. Analytical approximation for the Orr–Sommerfeld

equation

Since it is not possible to obtain an exact analytic solu-
tion for the Orr–Sommerfeld equation (14) due to the
dependence of the velocity U0 on the Z coordinate, we
now search for an approximate analytical solution. To
obtain approximate solutions for the Orr–Sommerfeld
equation, Anshus and Goren (1966) proposed to replace
this velocity by the velocity at the free surface while
keeping the second derivative of U0 at its true value. In this
section we apply this approach to the linear resonance
described by the set of Eqs. (14)–(20) and consider the limit
case of high Reynolds numbers.

Replacing U0(Z) in the Orr–Sommerfeld equation (14)
by the surface velocity of the Nusselt solution, 3/2, the
approximated Orr–Sommerfeld equation

/ZZZZ � 2d2/ZZ þ d4/ ¼ 3

2
idRe½/ZZ þ ð2� d2Þ/� ð21Þ

is solved by

/ ¼ c11 expðb1ZÞ þ c12 expð�b1ZÞ þ c21 expðb2ZÞ
þ c22 expð�b2ZÞ ð22Þ
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olds number (b) from the approximate Orr–Sommerfeld equation (21).
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with

b1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i
3

4
dReþ d2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i
3

4
dRe

� �2

þ 4 i
3

4
dRe

� �svuut

b2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i
3

4
dReþ d2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i
3

4
dRe

� �2

þ 4 i
3

4
dRe

� �svuut
ð23Þ

The constants cij in (22) are determined from the boundary
conditions (16)–(20) and finally the complex relative ampli-
tude A is obtained. The procedure is conceptually straight
forward but laborious. Thus, it is done with the help of
computer algebra software (Maple 11.0) and the final result
for the relative amplitude is given in Appendix A. Fig. 4
shows the maximum relative amplitude and the resonant
Reynolds number predicted by this analytic solution of
the approximate Orr–Sommerfeld equation (21). Appar-
ently, the solution retains all qualitative features of the ex-
act linear resonance. In particular, the three branches for
thin films, for intermediate films at high pressure numbers,
and for thick films are contained by the analysis.

The different regimes for the resonance have been classi-
fied on the basis of the film-thickness parameter d. In the
set of Eqs. (16)–(21), the parameter enters in three ways:
(i) It rescales the Reynolds number and the pressure num-
ber, (ii) it scales viscous damping in (19)–(21), and (iii) it
governs the importance of the convective term �(3/
2)idRed2/ in (21).

Next, we try to understand the above behaviour by an
asymptotic expansion of the analytic solution (22), in the
limit of high Reynolds numbers. The validity of such an
expansion is justified by Fig. 4b, which shows that the res-
onant Reynolds number is quite high for large pressure
numbers. We start with the general expression for the rel-
ative amplitude, A, given in (A.1) of Appendix A, and
retain the leading-order term in

ffiffiffiffiffiffiffiffi
dRe
p

in the numerator
and the first three orders in

ffiffiffiffiffiffiffiffi
dRe
p

in the denominator.
As will be seen next, these three orders are sufficient to
capture the main characteristics of the resonance.
Assuming that Phc and Re are of comparable magnitude
yields
A ¼ �3dRe
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 2

p
ffiffiffiffiffiffiffiffiffiffi
3
4
dRe

q
ð1þ iÞ

dP hc exp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 2

p� �
� exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 2

p� ��
� 3

4
dRe

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 2

p
exp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 2

p� �
þ exp

��
0
B@

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 2

p dP hc exp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 2

p� �
þ exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 2

p� �� �
� 3

4
dRe

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 2

p
exp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 2

p� �
� exp �

p��
0
B@

þ
ffiffiffiffiffiffiffiffiffiffi
3
4
dRe

q
ð1� iÞ

dP hc
10þd2

3dRe

� �
exp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 2

p� �
� exp �

��
� 3

4
dRe

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 2

p
1

3dRe
�24�4d2þ9d4

d2�2

� �
exp

��
0
B@

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:
Details of the derivation are given in Appendix B. Group-
ing terms according to the order of approximation, we
write (24) as

A ¼ 3dRe
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 2

p
ðdReÞ3=2a1 þ ðdReÞa2 þ ðdReÞ1=2a3

ð25Þ

where a1, a2, a3 are functions of d and the ratio Phc/Re.
Perfect resonance is predicted from (25) by retaining in

the denominator only the leading-order term. Indeed, the
following resonance condition is found at first-order by set-
ting a1 = 0:

Reres ¼
4

3

P hcffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 2

p

�
exp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 2

p� �
� exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 2

p� �
exp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 2

p� �
þ exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 2

p� � ð26Þ

which evidently results in an infinite amplitude. According
to (26), Reres is proportional to d�1 for very thick films and
grows continuously with decreasing film thickness up to the
limit Reres � 6Phc for d ? 0. This relation describes accu-
rately the observed variation of the resonant Reynolds
number with film thickness (Fig. 3b and Fig. 4b) for thick
films. As an example, we compare in Fig. 5b exact and
asymptotic results, and confirm that the next-order term
is necessary only to capture the decline in Reres observed
for thin films.

The above leading-order behaviour is reminiscent of the
classical inviscid problem of a liquid current moving with
uniform base velocity along a wavy wall (Miles, 1986; Kir-
by, 1988; Sammarco et al., 1994). That problem has been
studied as a useful model of the dynamics of erodible beds
in open channel flows (Reynolds, 1965; Mei, 1969). It is
recalled that, in the inviscid limit, the no-slip boundary
condition on the wall is dropped, and the resulting slip
velocity is of the order of the base current. Thus, the wavy
wall imparts large momentum perturbations normal to the
mean flow direction, which trigger a strong resonance. The
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 2

p ��
1
CA

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 2

��
1
CA

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 2

p ��
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 2

p �
þ exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 2

p� ��
1
CA

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

ð24Þ
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approximate Orr–Sommerfeld equation (21) and the limiting cases of (24) at high Reynolds number for different orders of approximation. Phc = 500.
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parallelism is further strengthened by noting that an invis-
cid approximation of the present formulation (i.e. neglect-
ing the viscous terms in (20) and (21), and dropping (17)
and (19) leads precisely to the resonance condition (26).

Returning to Eq. (24), we note that the second- and
third-order terms detune the perfect resonance, and thus
reduce the influence of the wall deformation on the free
surface. The changes, with increasing order of approxima-
tion, in the predicted relative amplitude and resonant Rey-
nolds number are demonstrated in Fig. 5 for the
representative case Phc = 500. Fig. 5a shows that, with
the addition of the second-order term, the relative ampli-
tude for films of intermediate thickness (i.e. the saturation
region) is correctly predicted. However, there is growing
deviation for thick films. Fig. 5b shows that the addition
of the second-order term reveals the local maximum in
the resonant Reynolds number and the subsequent decline
with decreasing film thickness. Finally, from Fig. 5a, we
note that inclusion of the third-order term in the high-Re
expansion (24) also captures the decline of the relative
amplitude in thick films. Thus, the first three orders inffiffiffiffiffiffiffiffi

dRe
p

in the denominator of (24) suffice to describe the
main resonance characteristics.

There are two regions, however, that are not properly
accounted for: (i) In the limit of very thin films (d < 0.1),
there occurs, with decreasing film thickness, an abrupt
decline of the relative amplitude towards the value one
and an equally abrupt rise in the resonant Reynolds
number. Though Fig. 4 confirms that this trend is present
in the full analytic solution (22), it is not recovered up to
the third-order. (ii) The asymptotics are derived with the

assumption that term
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 2

p
is of order one, thus a singu-

larity appears at third-order at d ¼
ffiffiffi
2
p

(Fig. 5a). As this
singularity affects only a narrow range of film thicknesses,
inclusion of even higher terms in order to remove it does
not appear justifiable.

It is evident from the above discussion and also from
looking at Eq. (24), that a change of behaviour takes place
by crossing the dimensionless film thickness d ¼

ffiffiffi
2
p

. This
change can be traced back to the change in sign of the
/-terms on the right-hand side of the Orr–Sommerfeld
equation (21) and thus to the convective coupling between
the leading-order flow velocity U0 and the velocity pertur-
bation perpendicular to the mean flow direction W1, which
transports the perturbation caused by the bottom undula-
tion to the free surface. For d <

ffiffiffi
2
p

, the coupling is efficient
but the rescaling by d of the Reynolds and pressure numbers
makes the resonance broader and weaker. For d >

ffiffiffi
2
p

, the
efficiency of transportation of the bottom perturbation
towards the free surface gradually deteriorates. As a result,
the resonance remains sharp but declines in amplitude.
5. Discussion

The steady flow of a liquid film along a wavy wall is
described, in the limit of small amplitude corrugations,
by an Orr–Sommerfeld equation with zero phase velocity
(14). This coincidence points to a connection between the
presently investigated linear resonance and the stability
analysis of film flow along a flat wall. Similar to the situa-
tion of vibrating walls (Floryan et al., 2002), the weakly
wavy wall may be viewed as a forcing function for Nusselt
flow, which will produce significant effects only if it hap-
pens to be in synchrony with one of its eigenmodes. In this
respect, we are interested in a mode with the same wave-
length as the wall and with zero phase velocity. Such a
mode could potentially extract energy from the spatially
steady modulations imposed on the base flow by the wavy
wall.

To study this point further, we consider the full Orr–
Sommerfeld equation

/ZZZZ � 2d2/ZZ þ d4/¼ idRe½ðU 0�CÞð/ZZ � d2/Þ �U 0ZZ /�
ð27Þ

where C is the dimensionless phase velocity of the distur-
bance, and solve it with a standard numerical technique
subject to the appropriate homogenous boundary condi-
tions at the wall and the free surface. As a representative
example, we take Phc = 50 and d = 1.0, i.e. we consider
the temporal stability of a flat film subjected to a distur-
bance of wavelength corresponding to the above value of
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d. Fig. 6 shows the real and imaginary part of the phase
velocity of the least stable modes for Re = 50, Re = 92.6
and Re = 135.2.

There are always two surface modes in Fig. 6, which cor-
respond to capillary-gravity waves travelling in the positive
and negative direction with respect to the mean flow. The
fast wave is the well-known source of interfacial instability,
which leads to the kinematic surface waves not accounted
for in the steady flow considered in this paper. The slow
wave is always weakly damped, but its phase velocity is
observed to shift from negative to positive values. Most
notably, it is exactly zero at the Reynolds number that
leads to maximum steady response in film flow along a
wavy wall with Phc = 50 and d = 1 (see Fig. 2). This coin-
cidence supports the conclusion that resonance is caused by
energy transfer to the capillary-gravity wave that is travel-
ling against the mean flow and thus may remain steady in
the laboratory frame of reference.

We note that the resonant deformation of the free sur-
face is important even under conditions that lead to
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Fig. 6. The real and imaginary parts of the phase velocity of the least
stable linear eigenmodes for film flow along a flat wall at Phc = 50 and
d = 1. Results for Re = 50 (a), Re = 92.6 (b), and Re = 135.2 (c).
growth of the fast travelling eigenmode, i.e. when the
steady film flow is unstable. This happens because the
instability is convective, and the steady deformation
forms the base flow on which the kinematic waves travel.
Indeed, it has been experimentally confirmed by Argyri-
adi et al. (2006) that the resonant deformation is a dom-
inant feature of the free surface, and is only slightly
modulated in amplitude and phase during the passage
of travelling waves.

The above relation between steady resonance and capil-
lary-gravity modes helps understand the change in reso-
nance sharpness with dimensionless film thickness. Waves
are almost non-dispersive on very thin films, i.e. their phase
velocity varies weakly with the parametric conditions. As a
result, the resonance is broad. On the contrary, the strongly
dispersive nature of waves on thicker films assures that
only a narrow range around perfect tuning (C = 0) is sig-
nificantly amplified.

6. Conclusions

We study steady flow of a liquid film along a corru-
gated wall in the linear limit of infinitesimal corrugation
amplitude. This flow is parameterized by the Reynolds
number, the pressure number (sum of hydrostatic and
capillary contributions) and the dimensionless film thick-
ness, and is described by an Orr–Sommerfeld equation
with zero phase velocity and inhomogeneous boundary
conditions.

A numerical investigation shows that the resonance is
rather weak (with free surface amplitude not exceeding
three times that of the wall), and that it is broad in thin
films and sharp in thick films. In thin films the amplitude
increases with the film thickness, whereas it decreases in
thick films. The resonance generally strengthens with the
pressure number, Phc, but when Phc � O(102) a satura-
tion plateau develops at intermediate film thicknesses
where the amplitude does not change with further
increase in Phc.

Approximating the leading-order (semi-parabolic)
velocity profile in the Orr–Sommerfeld equation by the free
surface value allows for an analytic solution, which retains
the qualitative features of the exact linear results. An
asymptotic expansion of the analytic solution in the limit
of high Reynolds numbers, reveals the relevant physical
mechanisms: at first-order, the classical inviscid resonance
of a uniform current is recovered, which predicts correctly
the resonant Reynolds number for thick and intermediate
films but has infinite relative amplitude (perfect tuning).
Second and third-order terms detune perfect resonance
and account for almost all the main characteristics. The
second-order correction is related to the rescaling by d of
the Reynolds and pressure numbers, and is significant for
thin films. The third-order correction is related to the con-
vective coupling of the leading-order velocity to the com-
ponent perpendicular to the mean flow direction. Thus, it
accounts for the gradual deterioration in the efficiency of
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the flow to transport wall perturbations towards the free
surface.

Our results support the view that the resonance is asso-
ciated with the interaction of the undulated film with cap-
illary-gravity waves travelling against the mean flow
direction. As a consequence, the resonance peak is attained
under conditions that render the wave phase velocity equal
to zero in the laboratory reference frame, and thus permit
direct exchange of energy between the steadily deformed
film and the free surface.
Appendix A. Analytic solution of the approximate

Orr–Sommerfeld equation

Complex relative amplitude:
A ¼ 6ðb2
2 � b2

1Þ½n2ðexpðb1Þ � expð�b1ÞÞ � n1ðexpðb2Þ � expð�b2ÞÞ�
dP hc½G1ðexpðb1 þ b2Þ � expð�b1 � b2ÞÞ þ G2ðexpðb1 � b2Þ � expð�b1 þ b2ÞÞ�
þ 3

2
½G3ðexpðb1 þ b2Þ þ expð�b1 � b2ÞÞ þ G4ðexpðb1 � b2Þ þ expð�b1 þ b2ÞÞ� þ 3G5

	 
 ðA:1Þ
where

G1 :¼ b3
1 þ b3

2 � b1b2ðb1 þ b2Þ
G2 :¼ �ðb3

1 � b3
2Þ � b1b2ðb1 � b2Þ

G3 :¼ �ðb1 � b2Þðn2t1 � n1t2Þ
G4 :¼ �ðb1 þ b2Þðn2t1 þ n1t2Þ
G5 :¼ b1n2t2 þ b2n1t1

n1 :¼ b1

1

2
dReþ i

1

3
b2

1 � id2

� �

n2 :¼ b2

1

2
dReþ i

1

3
b2

2 � id2

� �
t1 :¼ b2

1 þ d2 þ 2

t2 :¼ b2
2 þ d2 þ 2

ðA:2Þ

with b1 and b2 given by (23).
A ¼
3dReb2

2b1 þ i6b2
2b1

1
3
b2

1 � d2
� �

� 3dReb3
1

�dP hc

b3
2ðexpðb1Þ � expð�b1ÞÞ � b2

2b1ðexpðb1Þ þ expð�
�b2b

2
1ðexpðb1Þ � expð�b1ÞÞ þ b3

1ðexpðb1Þ þ expð

"

þ 3
2

b2

1
2
dReb2

2b1

þ 1
2
dReb1ðb2

1 þ 2d2 þ 4Þ þ i 2
3
b2

2b1ðb2
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Appendix B. Limit case approximations for high Reynolds

numbers

Expanding b1 and b2 for large Reynolds numbers and
with d being of order one, we arrive from (23) at
b1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 2þ 2

i 3
4
dRe
þO

1

ðdReÞ2

 !vuut

b2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2i

3

4
dReþ d2 þ 2� 2

i 3
4
dRe
þO

1

ðdReÞ2

 !vuut
ðB:1Þ
i.e. b2 ¼ O
ffiffiffiffiffiffiffiffi
dRe
p� �

and b1 is of order one unless
d �

ffiffiffi
2
p

, where b1 = O((dRe)�1/2). In the following
considerations of the limit case study we assume b1

to be of order one, i.e. excluding the case d �
ffiffiffi
2
p

.
Thus, retaining for the relative amplitude from (A.1)
only terms with exp(b2) and neglecting the rest we
arrive at
A ¼ �6ðb2
2 � b2

1Þn1

dP hc½G1 expðb1Þ � G2 expð�b1Þ� þ 3
2
½G3 expðb1Þ þ G4 expð�b1Þ�

ðB:2Þ
where exp(b2) has cancelled out. Inserting G1–G4

according to (A.2) and arranging the terms in the
numerator and the denominator in powers of the
square root of the Reynolds number, the complex
amplitude reads now
� i6b3
1

1
3
b2

1 � d2
� �

b1ÞtÞ
�b1ÞÞ

#
1
CCAðexpðb1Þ þ expð�b1ÞÞ

d2 þ 2Þ
�
1
CCAðexpðb1Þ � expð�b1ÞÞ

3
77777777775

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

ðB:3Þ
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where b2-terms were arranged according to their leading
order in the Reynolds number. The dependence on b2

shows that numerator and denominator are power series
in

ffiffiffiffiffiffiffiffi
dRe
p

.
Since resonance is mainly governed by the denominator,

we retain only the leading-order term for the numerator
but consider the first three orders in

ffiffiffiffiffiffiffiffi
dRe
p

in the denomina-
tor, assuming that Phc and Re are of comparable order.
After inserting b1 and b2 from (B.1) and arranging the
denominator in real and imaginary parts, we finally arrive
at (24).
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